Abstract
Carbon dioxide (CO2)-enhanced oil recovery (EOR) has great potential and opportunity for further development, and it is one of the vital carbon capture, utilization, and storage (CCUS) technologies. However, strong heterogeneity is one of the several challenges in developing reservoirs, especially for China’s continental tight oil reserves. This study investigates the effects of heterogeneous porosity and permeability on CO2 flooding evolution in low-permeable tight formation. We simulated CO2-EOR using a numerical model developed on the platform of TOUGH2MP-TMVOC to evaluate the effect of different levels of heterogeneity on oil production, gas storage, and flow behaviors in a tight reservoir, controlled by standard deviation and correlation length. A comparison of nine cases reveals that porosity heterogeneity commonly intensifies flow channeling, and there is an oil production decline with higher standard deviation and longer correlation length of porosity field. In addition, the porosity correlation length has a negligible effect on reservoir performance when the standard deviation is relatively low. Furthermore, strong heterogeneity also has a negative impact on the storage capacity of CO2 and oil production. Notably, as the standard deviation was raised to 0.1, a small sweep region arose with the early CO2 breakthrough, which led to a worse flooding effect. Finally, this study exemplifies that a higher injection/production rate and CO2 alternating N2 injection strategies can improve oil recovery in highly heterogeneous reservoirs.
Funder
China Scholarship Council
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献