A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation

Author:

Gallego Pareja Luis A.ORCID,López-Lezama Jesús M.ORCID,Gómez Carmona OscarORCID

Abstract

Distributed generation (DG) aims to generate part of the required electrical energy on a small scale closer to the places of consumption. Integration of DG into an existing electric distribution network (EDN) has technical, economic, and environmental benefits. DG placement is typically determined by investors and local conditions such as the availability of energy resources, space, and licenses, among other factors. When the location of DG is not a decision of the distribution network operator (DNO), the simultaneous integration of distribution network reconfiguration (DNR) and DG placement can maximize the benefits of DG and mitigate eventual negative impacts. DNR consists of altering the EDN topology to improve its performance while maintaining the radiality of the network. DNR and optimal placement of DG (OPDG) are challenging optimization problems since they involve integer and continuous variables subject to nonlinear constraints and a nonlinear objective function. Due to their nonlinear and nonconvex nature, most approaches to solve these problems resort to metaheuristic techniques. The main drawbacks of such methodologies lie in the fact that they are not guaranteed to reach an optimal solution, and most of them require the fine-tuning of several parameters. This paper recasts the nonlinear DNR and OPGD problems into linear equivalents to obtain a mixed-integer linear programming (MILP) model that guarantees global optimal solutions. Several tests were carried out on benchmark EDNs evidencing the applicability and effectiveness of the proposed approach. It was found that when no DG units are considered, the proposed model can find the same results reported in the specialized literature but in less computational time; furthermore, the inclusion of DG units along with DNR usually allows the model to find better solutions than those previously reported in the specialized literature.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3