Neural Network and Random Forest-Based Analyses of the Performance of Community Drinking Water Arsenic Treatment Plants

Author:

Bhattacharya Animesh,Sahu Saswata,Telu Venkatesh,Duttagupta SrimantiORCID,Sarkar Soumyajit,Bhattacharya Jayanta,Mukherjee Abhijit,Ghosal Partha Sarathi

Abstract

A plethora of technologies has been developed over decades of extensive research on arsenic remediation, although the technical and financial perspective of arsenic removal plants in the field requires critical evaluation. In the present study, focusing on some of the pronounced arsenic-affected areas in West Bengal, India, we assessed the implementation and operation of different arsenic removal technologies using a dataset of 4000 spatio-temporal data collected from an in-depth field survey of 136 arsenic removal plants engaged in the public water supply. Our statistical analysis of this dataset indicates a 120% rise in the average cumulative capacity of the plants during 2014–2021. The majorities of the plants are based on the activated alumina with FeCl3 technology and serve about 49% of the population in the study area. The average cost of water production for the activated alumina with FeCl3 technology was found to be ₹7.56/m3 (USD $1 ≈ INR ₹70), while the lowest was ₹0.39/m3 for granular ferric hydroxide technology. A machine learning-based framework was employed to analyze the impact of water quality and treatment plant parameters on the removal efficiency, capital, and operational cost of the plants. The artificial neural network model exhibited adequate statistical significance, with a high F-value and R2 of 5830.94 and 0.72 for the capital cost model, 136,954, and 0.98 for the operational cost model, respectively. The relative importance of the process variables was identified through random forest models. The models indicated that flow rate, media, and chemicals are the predominant costs, while contaminant loading in influent water and a coagulating agent was important for removal efficiency. The established framework may be instrumental as a decision-making tool for water providers to assess the expected performance and financial involvement for proposed or ongoing arsenic removal plants concerning various design and quality parameters.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3