Exploiting Direct Laser Writing for Hydrogel Integration into Fragile Microelectromechanical Systems

Author:

Menges JulianORCID,Klingel Steffen,Oesterschulze EgbertORCID,Bart Hans-Jörg

Abstract

The integration of chemo-responsive hydrogels into fragile microelectromechanical systems (MEMS) with reflective surfaces in the micron to submicron range is presented. Direct laser writing (DLW) for 3D microstructuring of chemoresponsive “smart” hydrogels on sensitive microstructures is demonstrated and discussed in detail, by production of thin hydrogel layers and discs with a controllable lateral size of 2 to 5 µm and a thickness of some hundred nm. Screening results of polymerizing laser settings for precision microstructuring were determined by controlling crosslinking and limiting active chain diffusion during polymerization with macromers. Macromers are linear polymers with a tunable amount of multifunctional crosslinker moieties, giving access to a broad range of different responsive hydrogels. To demonstrate integration into fragile MEMS, the gel was deposited by DLW onto a resonator with a 200 nm thick sensing plate with high precision. To demonstrate the applicability for sensors, proof of concept measurements were performed. The polymer composition was optimized to produce thin reproducible layers and the feasibility of 3D structures with the same approach is demonstrated.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3