Development of an ArcGIS-Pro Toolkit for Assessing the Effects of Bridge Construction on Overland Soil Erosion

Author:

Ahmari Habib,Pebworth Matthew,Baharvand SamanORCID,Kandel Subhas,Yu Xinbao

Abstract

Erosion is a natural process, but it can be accelerated by anthropogenic activities. Two of the predominant types of human-induced erosion are related to agricultural and construction activities. Of the two, construction-induced erosion is more severe because of the simultaneous removal of the land cover, disturbance of the soil, and eventual compaction of the soil by heavy machinery. Eroded materials released from bridge construction sites can alter the sediment regime and geomorphological conditions of receiving streams and may have short- and long-term impacts on aquatic habitats. Several models have been developed to estimate the total amount of soil erosion and sediment yield; however, no predictive model is available to quantify the potential release of sediment during the construction of bridges or to predict the quantity, size fraction, and accumulation depths for the extent of the measurable downstream effect. A GIS-based predictive sediment toolkit is developed to estimate the overland erosion and to determine the potential depositional area and suspended sediment concentration downstream of bridges. The performance of the GIS toolkit in estimating soil erosion was assessed using field data collected from the Wilson Creek bridge construction site in McKenney, Texas, U.S., and it was concluded that it predicted the overland erosion rate and sediment yield within the ranges observed in the field.

Funder

Texas Department of Transportation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference53 articles.

1. Critical Infrastructure for Texas Growth https://docs.txoga.org/files/1021-ihs_3-19-19-final.pdf

2. Environmental Impact and Benefits Assessment for Final Effluent Guidelines and Standards for the Construction and Development Category;U.S. Environment Protection Agency (EPA),2009

3. Erosion and Sediment Control Field Guide for Road Construction-Part 1;Witheridge,2017

4. Long-Term Impacts of Bridge and Culvert Construction or Replacement on Fish Communities and Sediment Characteristics of Streams

5. Influences of High-Flow Events on a Stream Channel Altered by Construction of a Highway Bridge: A Case Study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3