Evaluation of Maximum Entropy (Maxent) Machine Learning Model to Assess Relationships between Climate and Corn Suitability

Author:

Fitzgibbon Abigail,Pisut DanORCID,Fleisher DavidORCID

Abstract

Given the impact that climate change is projected to have on agriculture, it is essential to understand the mechanisms and conditions that drive agricultural land suitability. However, existing literature does not provide sufficient guidance on the best modeling methodology to study crop suitability, and there is even less research on how to evaluate the accuracy of such models. Further, studies have yet to demonstrate the use of the Maximum Entropy (Maxent) model in predicting presence and yield of large-scale field crops in the United States. In this study, we investigate the application of the Maxent model to predict crop suitability and present novel methods of evaluating its predictive ability. Maxent is a correlative machine learning model often used to predict cropland suitability. In this study, we used Maxent to model land suitability for corn production in the contiguous United States under current bioclimatic conditions. We developed methods for evaluating Maxent’s predictive ability through three comparisons: (i) classification of suitable land units and comparison of results with another similar species distribution model (Random Forest Classification), (ii) comparison of output response curves with existing literature on corn suitability thresholds, and (iii) with correlation of predicted suitability with observed extent and yield. We determined that Maxent was superior to Random Forest, especially in its modeling of areas in which land was likely suitable for corn but was not currently associated with observed corn presence. We also determined that Maxent’s predictions correlated strongly with observed yield statistics and were consistent with existing literature regarding the range of bioclimatic variable values associated with suitable production conditions for corn. We concluded that Maxent was an effective method for modeling current cropland suitability and could be applied to broader issues of agriculture–climate relationships.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3