Sustainable Urban Development for Heat Adaptation of Small and Medium Sized Communities

Author:

Wollschläger NielsORCID,Zinck Felix,Schlink UweORCID

Abstract

Due to climate change, urban populations will be affected by worsening heat stress. The use of blue–green infrastructure can be an effective countermeasure for urban planners. In this study, the ENVI-met modelling system is used to investigate the impacts of different heat adaptation strategies, such as additional urban trees, irrigation policies, and the use of high reflective surface materials. However, under certain local conditions, these measures can have conflicting effects, e.g., trees can provide shadow but also reduce the cooling ventilation. To address such conflicts, we developed an online tool visualising urban climate simulation data and applying a new decomposition algorithm that translates the biophysical processes (i.e., radiation, ventilation, evapotranspiration, and heat storage) into surface temperature changes during heat wave events. This approach allows us to (1) identify factors responsible for heat, (2) comparatively evaluate heat mitigation of different land development scenarios, and (3) find trade-offs for conflicting adaptation measures. This online tool can support the decision-making of local stakeholders.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3