A Geometric Approach to the Sundman Transformation and Its Applications to Integrability

Author:

Cariñena José F.1ORCID

Affiliation:

1. Department of Theoretical Physics, University of Zaragoza, 50009 Zaragoza, Spain

Abstract

A geometric approach to the integrability and reduction of dynamical systems, both when dealing with systems of differential equations and in classical physics, is developed from a modern perspective. The main ingredients of this analysis are infinitesimal symmetries and tensor fields that are invariant under the given dynamics. A particular emphasis is placed on the existence of alternative invariant volume forms and the associated Jacobi multiplier theory, and then the Hojman symmetry theory is developed as a complement to the Noether theorem and non-Noether constants of motion. We also recall the geometric approach to Sundman infinitesimal time-reparametrisation for autonomous systems of first-order differential equations and some of its applications to integrability, and an analysis of how to define Sundman transformations for autonomous systems of second-order differential equations is proposed, which shows the necessity of considering alternative tangent bundle structures. A short description of alternative tangent structures is provided, and an application to integrability, namely, the linearisability of scalar second-order differential equations under generalised Sundman transformations, is developed.

Funder

Spanish Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Reference57 articles.

1. Lie, S. (1891). Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen, Teubner. Reprinted in AMS Chelsea Publishing vol. CHEL/206.H, Amer. Math. Soc. 1967.

2. Geometry of Lie integrability by quadratures;Falceto;J. Phys. A Math. Theor.,2015

3. Solvability of a Lie algebra of vector fields implies their integrability by quadratures;Falceto;J. Phys. A Math. Theor.,2016

4. Tensor invariants and integration of differential equations;Kozlov;Russ. Math. Surv.,2019

5. Cariñena, J.F., Ibort, A., Marmo, G., and Morandi, G. (2015). Geometry from Dynamics: Classical and Quantum, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3