An Improved Dung Beetle Optimization Algorithm for High-Dimension Optimization and Its Engineering Applications

Author:

Wang Xu1,Kang Hongwei1ORCID,Shen Yong1ORCID,Sun Xingping1,Chen Qingyi1

Affiliation:

1. School of Software, Yunnan University, Kunming 650500, China

Abstract

One of the limitations of the dung beetle optimization (DBO) is its susceptibility to local optima and its relatively low search accuracy. Several strategies have been utilized to improve the diversity, search precision, and outcomes of the DBO. However, the equilibrium between exploration and exploitation has not been achieved optimally. This paper presents a novel algorithm called the ODBO, which incorporates cat map and an opposition-based learning strategy, which is based on symmetry theory. In addition, in order to enhance the performance of the dung ball rolling phase, this paper combines the global search strategy of the osprey optimization algorithm with the position update strategy of the DBO. Additionally, we enhance the population’s diversity during the foraging phase of the DBO by incorporating vertical and horizontal crossover of individuals. This introduction of asymmetry in the crossover operation increases the exploration capability of the algorithm, allowing it to effectively escape local optima and facilitate global search.

Funder

Open Foundation of Key Laboratory of Software Engineering of Yunnan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3