Modeling Renewable Warranties and Post-Warranty Replacements for Self-Announcing Failure Products Subject to Mission Cycles

Author:

Shang Lijun1,Chen Jianhui2,Liu Baoliang3,Lin Cong4,Yang Li5ORCID

Affiliation:

1. School of Quality Management and Standardization, Foshan University, Foshan 528225, China

2. China North Standardization Center, Beijing 100089, China

3. College of Mathematics and Statistics, Shanxi Datong University, Datong 037054, China

4. AVIC China Areo-Polytechnology Establishment, Beijing 100028, China

5. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

Abstract

The number of failures serves as a critical indicator that dynamically impacts the reliability of self-announcing failure products, making it highly practical to incorporate the failure count into reliability management throughout the entire product life cycle. This paper investigates comprehensive methodologies for effectively managing the reliability of self-announcing failure products throughout both the warranty and post-warranty stages, taking into account factors such as the failure count, mission cycles, and limited time duration. Three renewable warranty strategies are introduced alongside proposed models for post-warranty replacements. By analyzing variables like the failure number, mission cycles, and time constraints, these proposed warranties provide practical frameworks for efficient reliability management during the warranty stage. Additionally, the introduced warranties utilize cost and time metrics to extract valuable insights that inform decision making and enable effective reliability management during the warranty stage. Moreover, this study establishes cost and time metrics for key post-warranty replacements, facilitating the development of individual cost rates and model applications in other post-warranty scenarios. Analyses of the renewable free-repair–replacement warranties demonstrate that establishing an appropriate number of failures as the replacement threshold can effectively reduce warranty-servicing costs and extend the coverage duration.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3