Abstract
Mercury ion (Hg2+) is a well-known toxic heavy metal ion. It is harmful for human health even at low concentrations in the environment. Therefore, it is very important to measure the level of Hg2+. Many methods, reviewed in several papers, have been established on DNA biosensors for detecting Hg2+. However, few reviews on the strategy of enzyme-driven signal amplification have been reported. In this paper, we reviewed this topic by dividing the enzymes into nucleases and DNAzymes according to their chemical nature. Initially, we introduce the nucleases including Exo III, Exo I, Nickase, DSN, and DNase I. In this section, the Exo III-driven signal amplification strategy was described in detail. Because Hg2+ can help ssDNA fold into dsDNA by T-Hg-T, and the substrate of Exo III is dsDNA, Exo III can be used to design Hg2+ biosensor very flexibly. Then, the DNAzyme-assisted signal amplification strategies were reviewed in three categories, including UO22+-specific DNAzymes, Cu2+-specific DNAzymes and Mg2+-specific DNAzymes. In this section, the Mg2+-specific DNAzyme was introduced in detail, because this DNAzyme has highly catalytic activity, and Mg2+ is very common ion which is not harmful to the environment. Finally, the challenges and future perspectives were discussed.
Subject
Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献