Numerical Simulation for Void Coalescence (Water Treeing) in XLPE Insulation of Submarine Composite Power Cables

Author:

Drissi-Habti MonssefORCID,Raj-Jiyoti Das,Vijayaraghavan Soumianarayanan,Fouad Ech-Cheikh

Abstract

Due to the growing demand for offshore renewable energy, the development of durable submarine power cables is critical. Submarine power cables are expected to have a service life of over 20 years. However, it has been shown that these cables suffer from water-tree flaws that progressively extend to conductors and corrode copper, which may lead to premature failure. Water treeing is caused by the of interconnection of voids (of a few nanometers) that are present in the insulator after manufacturing or formed during operation. The economic consequences of a breakdown can be drastic due to the heavy maintenance required. In the current study, the insulator is modelled as cubic unit cells containing water voids in the form of ellipsoids. The displacement field of ellipsoids is found to be dependent on its distribution in the cubic cell and on the applied electric field. Von Mises stress and effective plastic strain at the tips of the ellipsoid are found to be significant when either the relative distance between the two ellipsoids is short or the applied electric field is high. The proposed model is intended to provide insights into the ageing of cross-linked polyethylene (XPLE), which is extremely difficult to predict experimentally due to the excessive time needed to achieve coalescence of voids.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3