Global Sliding-Mode Suspension Control of Bearingless Switched Reluctance Motor under Eccentric Faults to Increase Reliability of Motor

Author:

Rao Pulivarthi Nageswara,Devarapalli RameshORCID,García Márquez Fausto PedroORCID,Malik HasmatORCID

Abstract

Bearingless motor development is a substitute for magnetic bearing motors owing to several benefits, such as nominal repairs, compactness, lower cost, and no need for high-power amplifiers. Compared to conventional motors, rotor levitation and its steady control is an additional duty in bearingless switched reluctance motors when starting. For high-speed applications, the use of simple proportional integral derivative and fuzzy control schemes are not in effect in suspension control of the rotor owing to inherent parameter variations and external suspension loads. In this paper, a new robust global sliding-mode controller is suggested to control rotor displacements and their positions to ensure fewer eccentric rotor displacements when a bearingless switched reluctance motor is subjected to different parameter variations and loads. Extra exponential fast-decaying nonlinear functions and rotor-tracking error functions have been used in the modeling of the global sliding-mode switching surface. Simulation studies have been conducted under different testing conditions. From the results, it is shown that rotor displacements and suspension forces in X and Y directions are robust and stable. Owing to the proposed control action of the suspension phase currents, the rotor always comes back rapidly to the center position under any uncertainty.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3