Impact of DSM on Energy Management in a Single-Family House with a Heat Pump and Photovoltaic Installation

Author:

Zator SławomirORCID,Skomudek WaldemarORCID

Abstract

This article presents a case study of a single-family house, whose current energy source is electricity only. Nine years ago, the heat source for the heating system and domestic hot water was an oil boiler, which was changed to an air–water heat pump. Four years ago, when Poland formed the basis of the prosumer market, the first photovoltaic system was established. It was expanded in the following years. In this work are presented the impact of using a heat accumulator on the coefficient of performance of the heat pump, the self-consumption of energy from the photovoltaic system, and the cost of purchasing energy. Comparative calculations were made, with the demand-side management (DSM) active on work days, and on free days (weekends and public holidays) it was not. Attention was paid to the self-consumption factor depending on the algorithms used in an energy meter. The prosumer market in Poland was also described. The calculations described the house as having an annual energy self-consumption from photovoltaic about 6% higher than average values obtained in buildings with heat pumps. Simultaneously, due to energy storage in heat and the load shifting in the multi-zone tariff, the cost of purchasing energy was 47% lower than in a single-zone tariff (without heat storage and load shifting).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Demand response management by means of heat pumps controlled via real time pricing

2. Polish Power Grids-DSR Programshttps://dsr.pse.pl/

3. The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model

4. Local Storage: The Way Forward for Solar PV? Strategic Energy Technologies Information System,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3