Are You Wearing a Mask? Detecting If a Person Wears a Mask Using a Wristband

Author:

Msigwa Constantino,Baek Seungwoo,Bernard Denis,Yun JaeseokORCID

Abstract

Coronavirus 2019 (COVID-19) has posed a serious threat to the lives and health of the majority of people worldwide. Since the early days of the outbreak, South Korea’s government and citizens have made persistent efforts to provide effective prevention against further spread of the disease. In particular, the participation of individual citizens in complying with the necessary code of conduct to prevent spread of the infection, through measures such as social distancing and mask wearing, is as instrumental as the geographical tracking of the trajectory of the infected. In this paper, we propose an activity recognition method based on a wristband equipped with an IR array and inertial measurement unit (IMU) to detect individual compliance with codes of personal hygiene management, such as mask wearing, which are recommended to prevent the spread of infectious diseases. The results of activity recognition were comparatively analyzed by applying conventional machine learning algorithms and convolutional neural networks (CNNs) to the IMU time series and IR array thermal images collected from 25 subjects. When CNN and 24 × 32 thermal images were used, 97.8% accuracy was achieved (best performance), and when 6 × 8 low-resolution thermal images were used, similar performance with 97.1% accuracy was obtained. In the case of using IMU, the performance of activity recognition was lower than that obtained with the IR array, but an accuracy of 93% was achieved even in the case of applying machine learning algorithms, indicating that it is more suitable for wearable devices with low computational capability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3