Validity of the Wrist-Worn Polar Vantage V2 to Measure Heart Rate and Heart Rate Variability at Rest

Author:

Nuuttila Olli-PekkaORCID,Korhonen Elisa,Laukkanen Jari,Kyröläinen HeikkiORCID

Abstract

Heart rate (HR) and heart rate variability (HRV) can be monitored with wearable devices throughout the day. Resting HRV in particular, reflecting cardiac parasympathetic activity, has been proposed to be a useful marker in the monitoring of health and recovery from training. This study examined the validity of the wrist-based photoplethysmography (PPG) method to measure HR and HRV at rest. Recreationally endurance-trained participants recorded pulse-to-pulse (PP) and RR intervals simultaneously with a PPG-based watch and reference heart rate sensor (HRS) at a laboratory in a supine position (n = 39; 5-min recording) and at home during sleep (n = 29; 4-h recording). In addition, analyses were performed from pooled laboratory data (n = 11344 PP and RR intervals). Differences and correlations were analyzed between the HRS- and PPG-derived HR and LnRMSSD (the natural logarithm of the root mean square of successive differences). A very good agreement was found between pooled PP and RR intervals with a mean bias of 0.17 ms and a correlation coefficient of 0.993 (p < 0.001). In the laboratory, HR did not differ between the devices (mean bias 0.0 bpm), but PPG slightly underestimated the nocturnal recordings (mean bias −0.7 bpm, p < 0.001). PPG overestimated LnRMSSD both in the laboratory (mean bias 0.20 ms, p < 0.001) and nocturnal recordings (mean bias 0.17 ms, p < 0.001). However, very strong intraclass correlations in the nocturnal recordings were found between the devices (HR: 0.998, p < 0.001; LnRMSSD: 0.931, p < 0.001). In conclusion, PPG was able to measure HR and HRV with adequate accuracy in recreational athletes. However, when strict absolute values are of importance, systematic overestimation, which seemed to especially concern participants with low LnRMSSD, should be acknowledged.

Funder

Polar Electro Oy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3