Efficient Removal of Methyl Red Dye by Using Bark of Hopbush

Author:

Gul Salma,Kanwal Mansha,Qazi Raina AmanORCID,Gul Hajera,Khattak RozinaORCID,Khan Muhammad SufaidORCID,Khitab Fatima,Krauklis Andrey E.ORCID

Abstract

Methyl red (MR) dye, one of the azo dyes, is mutagenic and its persistence has negative effects on the environment and people’s health. The current work is the first to demonstrate that methyl red dye can be removed effectively and sustainably, utilizing biomass derived from the bark of the Dodonaea viscosa (Hopbush) plant. The Hopbush bark shows effective adsorption of MR, upto 73%, under optimized conditions in an aqueous medium. The experimental conditions were optimized by examining the effect of time, initial dye concentration, pH and ionic strength on the adsorption process in an aqueous medium. Maximum (i.e., 73%) adsorption of MR removal (500 ppm) was observed in highly acidic conditions (pH = 1) at a contact time of 75 min. The pseudo-second-order kinetic model and Freundlich adsorption isotherm appeared to be the most appropriate for characterizing the MR’s adsorption onto the bark of the D. viscosa plant. Furthermore, it was shown that bark powder outperformed animal charcoal, silica gel, and powdered flowers, as well as the leaves of the same species, in terms of adsorption capacity. Thus, a natural adsorbent that is inexpensive and readily available—the bark of the D. viscosa plant—can be used to effectively remove harmful dyes from contaminated water and protect water resources from harmful pollutants.

Funder

Women University Swabi, KPK, Pakistan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference63 articles.

1. Water pollution in Pakistan and its impact on public health — A review

2. The coming freshwater crisis is already here;Hinrichsen,2002

3. Application of low-cost adsorbents for dye removal – A review

4. Microbial degradation of azo dyes: A review;Sudha;Int. J. Curr. Microbiol. Appl. Sci.,2014

5. Photoelectrocatalytic degradation of methyl red using sprayed WO3 thin films under visible light irradiation

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3