Changes in the Stability Landscape of a River Basin by Anthropogenic Droughts

Author:

Garza-Díaz Laura E.ORCID,Sandoval-Solis SamuelORCID

Abstract

As water resources enter the era of the Anthropocene, the process of anthropogenic droughts arises as the interplay between climate cycles and human-centered water management in rivers. In their natural conditions, rivers exhibit a natural hydrologic variability, wet and dry cycles, that are a vital property for promoting ecological resilience. Human activities alter the temporal variability of streamflow, a resilience property of river systems. We argue that anthropogenic droughts in river basins can lead to changes in the resilience properties of the system depicted in stability landscapes. This study aims to analyze anthropogenic droughts and the changes provoked to the stability landscapes of the streamflow system of a river basin. We use 110 years of regulated and naturalized streamflow data to analyze the hydrologic variability (wet periods and droughts) of a river system. First, we determined the streamflow drought index (SDI), and the results were assessed using probability distribution functions to construct stability landscapes and explore the resilience properties of the system. The transboundary basin of the Rio Grande/Rio Bravo (RGB) is used as a case study. Our main findings include evidence of resilience erosion and alterations to the properties of the stability landscape by the human-induced megadrought in the RGB, which resulted from extensive anthropogenic alteration and fragmentation of the river system. The novelty of this research is to provide a baseline and move forward into quantifying ecological resilience attributes of river basins in water resources planning and management.

Funder

University of California, Davis

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference68 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3