Location-Aware Range-Error Correction for Improved UWB Localization

Author:

Coene Sander1ORCID,Li Chenglong2ORCID,Kram Sebastian3ORCID,Tanghe Emmeric1ORCID,Joseph Wout1ORCID,Plets David1ORCID

Affiliation:

1. WAVES Group, Department of Information Technology, Ghent University-imec, 9052 Ghent, Belgium

2. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

3. Information Technology (Communication Electronics), University Erlangen-Nuernberg, 91058 Erlangen, Germany

Abstract

In this paper, we present a novel localization scheme, location-aware ranging correction (LARC), to correct ranging estimates from ultra wideband (UWB) signals. Existing solutions to calculate ranging corrections rely solely on channel information features (e.g., signal energy, maximum amplitude, estimated range). We propose to incorporate a preliminary location estimate into a localization chain, such that location-based features can be calculated as inputs to a range-error prediction model. This way, we can add information to range-only measurements without relying on additional hardware such as an inertial measurement unit (IMU). This improves performance and reduces overfitting behavior. We demonstrate our LARC method using an open-access measurement dataset with distances up to 20 m, using a simple regression model that can run purely on the CPU in real-time. The inclusion of the proposed features for range-error mitigation decreases the ranging error 90th percentile (P90) by 58% to 15 cm (compared to the uncorrected range error), for an unseen trajectory. The 2D localization P90 error is improved by 21% to 18 cm. We show the robustness of our approach by comparing results to a changed environment, where metallic objects have been moved around the room. In this modified environment, we obtain a 56% better P90 ranging performance of 16 cm. The 2D localization P90 error improves as much as for the unchanged environment, by 17% to 18 cm, showing the robustness of our method. This method evolved from the first-ranking solution of the 2021 and 2022 International Conference on Indoor Position and Indoor Navigation (IPIN) Competition.

Funder

Excellence of Science (EOS) project MUlti-SErvice WIreless NETworks

imec project UWB-IR

Research Foundation Flanders

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3