A New Form of Train Detection as a Solution to Improve Level Crossing Closing Time

Author:

Zawodny Michał1ORCID,Kruszyna Maciej1ORCID,Szczepanek Wojciech Kazimierz1ORCID,Korzeń Mariusz1ORCID

Affiliation:

1. Faculty of Civil Engineering, Wrocław University of Science and Technology (Politechnika Wrocławska), 50-370 Wrocław, Poland

Abstract

The critical points on the rail and road network are their intersections, i.e., level crossings. During a train crossing, car traffic is stopped. This reduces the fluidity of traffic on the road and, consequently, can cause congestion. The problem increases with the number of cars and trains. Frequently, due to national regulations, level crossing closure times are long. It is mainly dictated by safety issues. Building two-level intersections is not always a good solution, mainly because of the high cost of implementation. In the article, the authors proposed the use of sensors to reduce level crossing closure times and improve the Level of Service on the road network. The analyzed railroad lines are local agglomeration lines, mainly due to safety (low speed of commuter trains) and high impact on the road network. The sensors proposed in the article are based on radar/LIDAR. Formulas similar to HCM methods are proposed, which can be implemented in a railroad crossing controller. Simulations using the PTV Vissim program are carried out and the results are worked out based on the obtained data. The considered method can reduce the level crossing closure time by 68.6%, thereby increasing the Level of Service on roads near railroads.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3