A Dual Architecture Fusion and AutoEncoder for Automatic Morphological Classification of Human Sperm

Author:

Mahali Muhammad Izzuddin12ORCID,Leu Jenq-Shiou1ORCID,Darmawan Jeremie Theddy13ORCID,Avian Cries1ORCID,Bachroin Nabil4,Prakosa Setya Widyawan1,Faisal Muhamad1ORCID,Putro Nur Achmad Sulistyo15

Affiliation:

1. Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan

2. Department of Electronic and Informatic Engineering Education, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia

3. Department of Bioinformatics, Indonesia International Institute for Life Science, Jakarta 13210, Indonesia

4. Departement of Electrical Engineering, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan

5. Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

Abstract

Infertility has become a common problem in global health, and unsurprisingly, many couples need medical assistance to achieve reproduction. Many human behaviors can lead to infertility, which is none other than unhealthy sperm. The important thing is that assisted reproductive techniques require selecting healthy sperm. Hence, machine learning algorithms are presented as the subject of this research to effectively modernize and make accurate standards and decisions in classifying sperm. In this study, we developed a deep learning fusion architecture called SwinMobile that combines the Shifted Windows Vision Transformer (Swin) and MobileNetV3 into a unified feature space and classifies sperm from impurities in the SVIA Subset-C. Swin Transformer provides long-range feature extraction, while MobileNetV3 is responsible for extracting local features. We also explored incorporating an autoencoder into the architecture for an automatic noise-removing model. Our model was tested on SVIA, HuSHem, and SMIDS. Comparison to the state-of-the-art models was based on F1-score and accuracy. Our deep learning results accurately classified sperm and performed well in direct comparisons with previous approaches despite the datasets’ different characteristics. We compared the model from Xception on the SVIA dataset, the MC-HSH model on the HuSHem dataset, and Ilhan et al.’s model on the SMIDS dataset and the astonishing results given by our model. The proposed model, especially SwinMobile-AE, has strong classification capabilities that enable it to function with high classification results on three different datasets. We propose that our deep learning approach to sperm classification is suitable for modernizing the clinical world. Our work leverages the potential of artificial intelligence technologies to rival humans in terms of accuracy, reliability, and speed of analysis. The SwinMobile-AE method we provide can achieve better results than state-of-the-art, even for three different datasets. Our results were benchmarked by comparisons with three datasets, which included SVIA, HuSHem, and SMIDS, respectively (95.4% vs. 94.9%), (97.6% vs. 95.7%), and (91.7% vs. 90.9%). Thus, the proposed model can realize technological advances in classifying sperm morphology based on the evidential results with three different datasets, each having its characteristics related to data size, number of classes, and color space.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3