Ship Detection for Optical Remote Sensing Images Based on Visual Attention Enhanced Network

Author:

Bi Fukun,Hou Jinyuan,Chen Liang,Yang Zhihua,Wang Yanping

Abstract

Ship detection plays a significant role in military and civil fields. Although some state-of-the-art detection methods, based on convolutional neural networks (CNN) have certain advantages, they still cannot solve the challenge well, including the large size of images, complex scene structure, a large amount of false alarm interference, and inshore ships. This paper proposes a ship detection method from optical remote sensing images, based on visual attention enhanced network. To effectively reduce false alarm in non-ship area and improve the detection efficiency from remote sensing images, we developed a light-weight local candidate scene network( L 2 CSN) to extract the local candidate scenes with ships. Then, for the selected local candidate scenes, we propose a ship detection method, based on the visual attention DSOD(VA-DSOD). Here, to enhance the detection performance and positioning accuracy of inshore ships, we both extract semantic features, based on DSOD and embed a visual attention enhanced network in DSOD to extract the visual features. We test the detection method on a large number of typical remote sensing datasets, which consist of Google Earth images and GaoFen-2 images. We regard the state-of-the-art method [sliding window DSOD (SW+DSOD)] as a baseline, which achieves the average precision (AP) of 82.33%. The AP of the proposed method increases by 7.53%. The detection and location performance of our proposed method outperforms the baseline in complex remote sensing scenes.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Equipment Pre-Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Edge-guided oceanic scene element detection;Knowledge-Based Systems;2024-01

2. MDD-ShipNet: Math-Data Integrated Defogging for Fog-Occlusion Ship Detection;IEEE Transactions on Intelligent Transportation Systems;2024

3. Advanced Ship Detection System using Yolo v7;2023 IEEE 7th Conference on Information and Communication Technology (CICT);2023-12-15

4. Fine-Grained Ship Classification by Combining CNN and Swin Transformer;Remote Sensing;2022-06-27

5. Recognition and Classification of Ship Images Based on SMS-PCNN Model;Frontiers in Neurorobotics;2022-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3