High-Temperature Pyrolysis for Elimination of Per- and Polyfluoroalkyl Substances (PFAS) from Biosolids

Author:

Bamdad Hanieh,Papari Sadegh,Moreside Emma,Berruti Franco

Abstract

Biosolids generated as byproducts of wastewater treatment processes are widely used as fertilizer supplements to improve soil condition and ultimately agricultural products yields and quality. However, biosolids may contain toxic compounds, i.e., per- and polyfluoroalkyl substances (PFAS), which can end up in soils, groundwater, and surface water, causing adverse environmental and health effects. The purpose of this study was to investigate the application of High-Temperature Pyrolysis (HTP) treatment for biosolids management, and its efficacy in eliminating PFAS from the solid fraction. Biosolid samples were pyrolyzed at two different temperatures, 500 and 700 °C, in a continuous bench-scale pyrolysis unit. The major finding is that the treatment process at higher pyrolysis temperatures can remarkably reduce or eliminate the level of PFAS (by ~97–100 wt%) in the resulting biochar samples.

Funder

The Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3