Coal-Scenedesmus Microalgae Co-Firing in a Fixed Bed Combustion Reactor: A Study on CO2, SO2 and NOx Emissions and Ash

Author:

Magida Nokuthula EthelORCID,Dugmore Gary,Ogunlaja Adeniyi SundayORCID

Abstract

This study investigated the effect of coal–Scenedesmus microalgae (with blending ratios of 100:0 (coal), 95:5 (Coalgae® 5%), 90:10 (Coalgae® 10%), 85:15 (Coalgae® 15%) and 80:20 (Coalgae® 20%)) on combustion temperature, mass loss, the formation of CO2, SO2 and NOx gases, and ash content under constant atmospheric air flow. Coalgae® refers to a material formed after blending coal and microalgae. The results showed that NOx came mainly from Coalgae® 10% and 15%, and this observation could be attributed to a variable air concentration level (O2 level) in the environment that could influence NOx during the combustion process, irrespective of the blending ratios. CO2 emission reductions (12%, 17%, 21% and 29%) and SO2 emission reductions (3%, 12%, 16% and 19%) increased with the increasing coal-microalgae blending ratio (Coalgae® 5–20%), respectively. Bubble-like morphology was observed in the ash particles of coal–microalgae blends through SEM, while the TEM confirmed the formation of carbon-based sheets and graphitic-based nanocomposites influenced by the microalgae amounts. Ash residues of the coal–microalgae blends contained high amounts of fluxing compounds (Fe2O3, K2O, CaO and MgO), which resulted in an increased base/acid ratio from 0.189 (coal) to 0.568 (Coalgae® 20%). Based on the above findings, the co-firing of coal–Scenedesmus microalgae led to a reduction in CO2, SO2, and NOx emissions. As such, lower Coalgae® blends can be considered as an alternative fuel in any coal-driven process for energy generation.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference57 articles.

1. B.P. Statistical Review of World Energy 2021

2. Coal-2021

3. Eskom Fact Sheet 2021

4. Tropical Forests and Climate Policy

5. The future environmental and health impacts of coal

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3