Abstract
Effective high slope risk assessment plays an important role in the safety management and control of the open-pit coal mining process. Traditional slope stability risk assessment methods rarely consider the time factor or evaluate the dynamic change of high slope in an open-pit mine at a certain time in a sensitivity assessment. This paper develops an interval trapezoidal fuzzy soft set method to achieve the high slope dynamic risk evaluation. The proposed dynamic interval trapezoidal fuzzy soft set method for risk assessment of high slope in an open-pit coal mine is developed by integrating the time points and weights of slope risk factors. The extended interval trapezoidal fuzzy soft set was used to calculate the weights of risk factors at different times, and the Fuzzy Analytical Hierarchy Process (FAHP) method was applied to determine the weights of risk factors. The weight change of different risk factors with time can be easily achieved with the proposed method. As a case study, this approach is implemented into a risk assessment model for the north high slope in Shengli #1 open-pit mine located in Xilinhot, Inner Mongolia. The model complies with three time points and contains 4 primary risk factors (S) and 17 secondary risk factors. The results indicated that the hydrological climate conditions and slope geometry conditions were the high risk factors affecting this open-pit coal mine slope. The reasonability and effectiveness of the evaluation results were verified with in-situ observations and measurements. This dynamic risk assessment method is helpful for improving safety management and control for the high slopes of open-pit mines in the coal mining process.
Funder
Scientific and Technological Project of Henan Province
Strength Improvement Plan of the Advantageous Disciplines of Zhongyuan University of Technology
Henan Postgraduate Education Reform and Quality Improvement Project
Postgraduate Education Reform and Quality Improvement Project of Zhongyuan University of Technology
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献