Monitoring the Recombinant Adeno-Associated Virus Production using Extended Kalman Filter

Author:

Iglesias Cristovão FreitasORCID,Xu Xingge,Mehta Varun,Akassou Mounia,Venereo-Sanchez Alina,Belacel NabilORCID,Kamen AmineORCID,Bolic Miodrag

Abstract

The recombinant adeno-associated virus (rAAV) is a viral vector technology for gene therapy that is considered the safest and most effective way to repair single-gene abnormalities in non-dividing cells. However, improving the viral titer productivity in rAAV production remains challenging. The first step to this end is to effectively monitor the process state variables (cell density, GLC, GLN, LAC, AMM, and rAAV viral titer) to improve the control performance for an enhanced productivity. However, the current approaches to monitoring are expensive, laborious, and time-consuming. This paper presents an extended Kalman filter (EKF) approach used to monitor the rAAV production using the online viable cell density measurements and estimating the other state variables measured at a low frequency. The proposed EKF uses an unstructured mechanistic kinetic model applicable in the upstream process. Three datasets were used for parameter estimation, calibration, and testing, and the data were collected from the production of rAAV through a triple-plasmid transfection of HEK293SF-3F6 cells. Overall, the proposed approach accurately estimated metabolite concentrations and the rAAV production yield. Therefore, the approach has a high potential to be extended to an online soft sensor and to be classified as a cost-effective and fast approach to the monitoring of rAAV production.

Funder

National Research Council through AI for Design Challenge Program

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3