A Fog-Cluster Based Load-Balancing Technique

Author:

Singh PrabhdeepORCID,Kaur Rajbir,Rashid JunaidORCID,Juneja SapnaORCID,Dhiman GauravORCID,Kim Jungeun,Ouaissa Mariya

Abstract

The Internet of Things has recently been a popular topic of study for developing smart homes and smart cities. Most IoT applications are very sensitive to delays, and IoT sensors provide a constant stream of data. The cloud-based IoT services that were first employed suffer from increased latency and inefficient resource use. Fog computing is used to address these issues by moving cloud services closer to the edge in a small-scale, dispersed fashion. Fog computing is quickly gaining popularity as an effective paradigm for providing customers with real-time processing, platforms, and software services. Real-time applications may be supported at a reduced operating cost using an integrated fog-cloud environment that minimizes resources and reduces delays. Load balancing is a critical problem in fog computing because it ensures that the dynamic load is distributed evenly across all fog nodes, avoiding the situation where some nodes are overloaded while others are underloaded. Numerous algorithms have been proposed to accomplish this goal. In this paper, a framework was proposed that contains three subsystems named user subsystem, cloud subsystem, and fog subsystem. The goal of the proposed framework is to decrease bandwidth costs while providing load balancing at the same time. To optimize the use of all the resources in the fog sub-system, a Fog-Cluster-Based Load-Balancing approach along with a refresh period was proposed. The simulation results show that “Fog-Cluster-Based Load Balancing” decreases energy consumption, the number of Virtual Machines (VMs) migrations, and the number of shutdown hosts compared with existing algorithms for the proposed framework.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3