Abstract
There is tremendous potential to utilize the exhaust gases and heat already present within combustion chambers to generate electrical power via solid oxide fuel cells (SOFCs). Variations in system design have been investigated as well as thorough examinations into the impacts of environmental conditions and fuel composition/concentration on SOFC performance. In an attempt to isolate the impacts of carbon monoxide and hydrogen concentration ratios within the exhaust stream, this work utilizes multi-temperature performance analyses with simulated methane combustion exhaust as fuel combined with dilute hydrogen baseline tests. These comparisons reveal the impacts of the complex reaction pathways carbon monoxide participates in when used as an SOFC fuel. Despite these complexities, performance reductions as a result of the presence of carbon monoxide are low when compared to similarly dilute hydrogen as a fuel. This provides further motivation for the continued development of SOFC-CHP systems. Stability testing performed over 80 h reveals the need for careful control of the operating environment as well as signs of carbon deposition. As a result of gas flow disruption, impacts of anode oxidation that may normally not hinder power production become significant factors in addition to coarsening of the anode material. Thermal management and strategies to minimize these impacts are a topic of future research.
Funder
United States Department of Energy
New York State Energy Research and Development Authority
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献