Toward Sustainable Gentle Awakenings and Sleep Inertia Mitigation: A Low-Cost IoT-Based Adaptable Lighting and Temperature Control Approach

Author:

Ho Tan-JanORCID,Huang Min-Yan,Chou Meng-Yu,Huang Bo-Han,Zhuang Ru-En

Abstract

In this paper, our design aims to assist in sleep inertia reduction and avoid the startle response and irritation caused by alarm-made unpleasant wakeup stimuli. Thus, we propose an approach that employs a soft and alerting sunrise simulation, conditionally utilizes natural light, and appropriately lowers the bedroom temperature for awakening a sleeper tenderly and gradually to gain full alertness. This approach is inspired by known scientific implications confirming the effectiveness of lights and temperatures on wakefulness. In this regard, we present an economical do-it-yourself digital tech-assisted system for bedroom lighting and temperature control. The system design is based on the smartphone and Internet of Things (IoT) technology. We develop the hardware and software in the system for implementing three IoT-based control tasks. One is the tuning of artificial light brightness using the pulse width modulation technique. Another is the opening of the window curtain using stepper motor control and light detection. The other is the activation of the air-conditioning setting using an infrared remote control and temperature detection. We construct a testbed for conducting experiments. Experimental results demonstrate that the proposed system can execute task requirements satisfactorily. The proposed system is promising for achieving our goal. It embodies features of sustainability.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Power-Efficient IoT-Based Awakening System for Healthcare;2023 5th International Conference on Bio-engineering for Smart Technologies (BioSMART);2023-06-07

2. Sleep Quality Monitoring IoT-Based Healthcare System;2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS);2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3