An Artificial Neural Network for Simulation of an Upflow Anaerobic Filter Wastewater Treatment Process

Author:

McCormick Mark

Abstract

The purpose of this work was to develop a problem-solving approach and a simulation tool that is useful for the specification of wastewater treatment process equipment design parameters. The proposition of using an artificial neural network (ANN) numerical model for supervised learning of a dataset and then for process simulation on a new dataset was investigated. The effectiveness of the approach was assessed by evaluating the capacity of the model to distinguish differences in the equipment design parameters. To demonstrate the approach, a mock dataset was derived from experimentally acquired data and physical effects reported in the literature. The mock dataset comprised the influent flow rate, the bed packing material dimension, the type of packing material and the packed bed height-to-diameter ratio as predictors of the calorific value reduction. The multilayer perceptron (MLP) ANN was compared to a polynomial model. The validation test results show that the MLP model has four hidden layers, each having 256 units (nodes), accurately predicts calorific value reduction. When the model was fed previously unseen test data, the root-mean-square error (RMSE) of the predicted responses was 0.101 and the coefficient of determination (R2) was 0.66. The results of simulation of all 125 possible combinations of the 3 mechanical parameters and identical influent wastewater flow profiles were ranked according to total calorific value reduction. A t-test of the difference between the mean calorific value reduction of the two highest ranked experiments showed that the means are significantly different (p-value = 0.011). Thus, the model has the capacity to distinguish differences in the equipment design parameters. Consequently, the values of the three mechanical feature parameters from the highest ranked simulated experiment are recommended for use in the design of the industrial scale upflow anaerobic filter (UAF) for wastewater treatment.

Funder

Swiss Academy of Engineering Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3