Study-GNN: A Novel Pipeline for Student Performance Prediction Based on Multi-Topology Graph Neural Networks

Author:

Li Ming,Wang Xiangru,Wang Yi,Chen Yuting,Chen Yixuan

Abstract

Student performance prediction has attracted increasing attention in the field of educational data mining, or more broadly, intelligent education or “AI + education”. Accurate performance prediction plays a significant role in solving the problem of a student dropping out, promoting personalized learning and improving teaching efficiency, etc. Traditional student performance prediction methods usually ignore the potential (underlying) relationship among students. In this paper, we use graph structure to reflect the students’ relationships and propose a novel pipeline for student performance prediction based on newly-developed multi-topology graph neural networks (termed MTGNN). In particular, we propose various ways for graph construction based on similarity learning using different distance metrics. Based on the multiple graphs of different topologies, we design an MTGNN module, as a key module in the pipeline, to deal with the semi-supervised node classification problem where each node represents a student (and the node label is the student’s performance, e.g., Pass/Fail/Withdrawal). An attention-based method is developed to produce the unified graph representation in MTGNN. The effectiveness of the proposed pipeline is verified in a case study, where a real-world educational dataset and several existing approaches are used for performance comparison. The experiment results show that, compared with some traditional machine learning methods and the vanilla graph convolutional network with only a single graph topology, our proposed pipeline works effectively and favorably in student performance prediction.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference50 articles.

1. Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence;Papamitsiou;J. Educ. Technol. Soc.,2014

2. 2021 EDUCAUSE Horizon Report Teaching and Learning Edition;Pelletier,2021

3. An overview and comparison of supervised data mining techniques for student exam performance prediction

4. Educational data mining: A survey from 1995 to 2005

5. Building course-specific regression-based models to identify at-risk students;Marbouti;Proceedings of the ASEE Annual Conference and Exposition,2015

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3