Pig Movement Estimation by Integrating Optical Flow with a Multi-Object Tracking Model

Author:

Zhou Heng12ORCID,Chung Seyeon2ORCID,Kakar Junaid Khan12ORCID,Kim Sang Cheol2,Kim Hyongsuk23ORCID

Affiliation:

1. Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

2. Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju 54896, Republic of Korea

3. Department of Electronics Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

Abstract

Pig husbandry constitutes a significant segment within the broader framework of livestock farming, with porcine well-being emerging as a paramount concern due to its direct implications on pig breeding and production. An easily observable proxy for assessing the health of pigs lies in their daily patterns of movement. The daily movement patterns of pigs can be used as an indicator of their health, in which more active pigs are usually healthier than those who are not active, providing farmers with knowledge of identifying pigs’ health state before they become sick or their condition becomes life-threatening. However, the conventional means of estimating pig mobility largely rely on manual observations by farmers, which is impractical in the context of contemporary centralized and extensive pig farming operations. In response to these challenges, multi-object tracking and pig behavior methods are adopted to monitor pig health and welfare closely. Regrettably, these existing methods frequently fall short of providing precise and quantified measurements of movement distance, thereby yielding a rudimentary metric for assessing pig health. This paper proposes a novel approach that integrates optical flow and a multi-object tracking algorithm to more accurately gauge pig movement based on both qualitative and quantitative analyses of the shortcomings of solely relying on tracking algorithms. The optical flow records accurate movement between two consecutive frames and the multi-object tracking algorithm offers individual tracks for each pig. By combining optical flow and the tracking algorithm, our approach can accurately estimate each pig’s movement. Moreover, the incorporation of optical flow affords the capacity to discern partial movements, such as instances where only the pig’s head is in motion while the remainder of its body remains stationary. The experimental results show that the proposed method has superiority over the method of solely using tracking results, i.e., bounding boxes. The reason is that the movement calculated based on bounding boxes is easily affected by the size fluctuation while the optical flow data can avoid these drawbacks and even provide more fine-grained motion information. The virtues inherent in the proposed method culminate in the provision of more accurate and comprehensive information, thus enhancing the efficacy of decision-making and management processes within the realm of pig farming.

Funder

Ministry of Agriculture, Food and Rural Affairs

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3