Phase Separation Study on the Storage of Technically Specification Natural Rubber Modified Bitumen

Author:

Ibrahim Bahruddin1ORCID,Wiranata Arya1,Zahrina Ida1,Sentosa Leo2,Nasruddin Nasruddin3ORCID,Muharam Yuswan4

Affiliation:

1. Chemical Engineering Department, University of Riau, Pekanbaru 28293, Indonesia

2. Civil Engineering Department, University of Riau, Pekanbaru 28293, Indonesia

3. Research Center for Agroindustry, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia

4. Chemical Engineering Department, University of Indonesia, Depok 16424, Indonesia

Abstract

Overloading and climate change are often problems in pavement structures. For this reason, hard asphalt binders have high softening points, are elastic, and have good adhesion, which is needed to improve pavement performance. Asphalt binder performance can be enhanced by adding additives such as natural rubber or natural-rubber-modified asphalt. However, natural-rubber-modified asphalt shows poor storage stability problems. This is due to differences in density and viscosity between the constituent components of natural-rubber-modified asphalt. This study examines the phase separation mechanism in technically specified natural rubber (TSNR) modified asphalt. Prediction of the optimum storage length of modified asphalt before phase separation occurs, using a combined incompressible Navier–Stokes and phase field model and carried out with COMSOL Multiphysics software version 5.5. Experimental validation was conducted at TSNR levels of 8, 10, and 12% at 160 °C for 48 h, with and without sulfur. The simulation showed that the asphalt modified with TSNR experienced phase separation after 12 h of storage at 160 °C under conditions without stirring. This aligns with the experimental results, which showed phase separation at 160 °C after 48 h. Adding sulfur additives did not have much effect on improving storage stability. The combined incompressible Navier–Stokes and phase field model accurately describes the phase separation in TSNR-modified asphalt. The results of this research recommend that the industry store natural-rubber-modified asphalt in a constantly stirred condition to prevent phase separation of modified asphalt. In addition, the results of this research help the industry predict or increase the homogeneity of polymer-modified asphalt production and save time and costs.

Funder

National Research and Innovation Agency

Indonesia Endowment Fund for Education Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3