Advancing Brain Tumor Segmentation with Spectral–Spatial Graph Neural Networks

Author:

Mohammadi Sina1,Allali Mohamed2ORCID

Affiliation:

1. Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA

2. Fowler School of Engineering, Chapman University, Orange, CA 92866, USA

Abstract

In the field of brain tumor segmentation, accurately capturing the complexities of tumor sub-regions poses significant challenges. Traditional segmentation methods usually fail to accurately segment tumor subregions. This research introduces a novel solution employing Graph Neural Networks (GNNs), enriched with spectral and spatial insight. In the supervoxel creation phase, we explored methods like VCCS, SLIC, Watershed, Meanshift, and Felzenszwalb–Huttenlocher, evaluating their performance based on homogeneity, moment of inertia, and uniformity in shape and size. After creating supervoxels, we represented 3D MRI images as a graph structure. In this study, we combined Spatial and Spectral GNNs to capture both local and global information. Our Spectral GNN implementation employs the Laplacian matrix to efficiently map tumor tissue connectivity by capturing the graph’s global structure. Consequently, this enhances the model’s precision in classifying brain tumors into distinct types: necrosis, edema, and enhancing tumor. This model underwent extensive hyper-parameter tuning to ascertain the most effective configuration for optimal segmentation performance. Our Spectral–Spatial GNN model surpasses traditional segmentation methods in accuracy for both whole tumor and sub-regions, validated by metrics such as the dice coefficient and accuracy. For the necrotic core, the Spectral–Spatial GNN model showed a 10.6% improvement over the Spatial GNN and 8% over the Spectral GNN. Enhancing tumor gains were 9.5% and 6.4%, respectively. For edema, improvements were 12.8% over the Spatial GNN and 7.3% over the Spectral GNN, highlighting its segmentation accuracy for each tumor sub-region. This superiority underscores the model’s potential in improving brain tumor segmentation accuracy, precision, and computational efficiency.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3