Multi-Robot Exploration Employing Harmonic Map Transformations

Author:

Blounas Taxiarchis-Foivos1ORCID,Bechlioulis Charalampos P.12ORCID

Affiliation:

1. Division of Systems and Automatic Control, Department of Electrical and Computer Engineering, University of Patras, Rio, 26504 Patras, Greece

2. Athena Research Center, Robotics Institute, Artemidos 6 & Epidavrou, 15125 Maroussi, Greece

Abstract

Robot Exploration can be used to autonomously map an area or conduct search missions in remote or hazardous environments. Using multiple robots to perform this task can improve efficiency for time-critical applications. In this work, a distributed method for multi-robot exploration using a Harmonic Map Transformation (HMT) is presented. We employ SLAM to construct a map of the unknown area and utilize map merging to share terrain information amongst robots. Then, a frontier allocation strategy is proposed to increase efficiency. The HMT is used to safely navigate the robots to the frontiers until the exploration task is complete. We validate the efficacy of the proposed strategy via tests in simulated and real-world environments. Our method is compared to other recent schemes for multi-robot exploration and is shown to outperform them in terms of total path distance.

Funder

European Union—NextGenerationEU

Publisher

MDPI AG

Reference30 articles.

1. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age;Cadena;IEEE Trans. Robot.,2016

2. Yamauchi, B. (1997, January 10–11). A Frontier-Based Approach for Autonomous Exploration. Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97—‘Towards New Computational Principles for Robotics and Automation’, Monterey, CA, USA.

3. Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., and Dignum, F. (2012). Advanced Agent Technology, Springer.

4. Mobarhani, A., Nazari, S., Tamjidi, A.H., and Taghirad, H.D. (2011, January 25–30). Histogram Based Frontier Exploration. Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA.

5. Deep Reinforcement Learning Robot for Search and Rescue Applications: Exploration in Unknown Cluttered Environments;Niroui;IEEE Robot. Autom. Lett.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3