Synthesis of a Multi-Template Molecular Imprinted Bulk Polymer for the Adsorption of Non-Steroidal Inflammatory and Antiretroviral Drugs

Author:

Sigonya Sisonke1ORCID,Mokhena Teboho Clement2,Mayer Paul Micheal3ORCID,Mdluli Phumlane Selby2ORCID,Makhanya Talent Raymond1,Mokhothu Thabang Hendrica1ORCID

Affiliation:

1. Department of Chemistry, Durban University of Technology, Durban 4000, South Africa

2. DST/Mintek NIC, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg 2125, South Africa

3. Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, STEM Complex, Room 342, Ottawa, ON K1N 6N6, Canada

Abstract

In this paper, we report the synthesis of a multi-template molecularly imprinted polymer (MIP) to target and extract naproxen, ibuprofen, diclofenac, emtricitabine, tenofovir disoproxil, and efavirenz from wastewater bodies. A bulk polymerization procedure was used to synthesize the MIP and non-imprinted polymer (NIP). The specific recognition sites for each target were obtained through the removal of the imprinted targeted compounds. The interaction of antiretroviral drugs (ARVs) and non-steroidal anti-inflammatory drugs (NSAIDs) compounds with the MIP was studied under various conditions such as pH, mass, concentration, and time factors. The results demonstrated the optimum conditions were 55 mg of MIP, pH 7.0, a concentration of 5 mg L−1, and a contact time of 10 min. For every compound studied, the extraction efficiencies for ARVs and NSAIDs in aqueous solutions was >96%. The adsorption capacity for the MIP was >0.91 mg·g−1. Adsorption obeys a second-order rate, and the Freundlich model explains the adsorption isotherm data. This study demonstrated that the synthesized multi-template MIP has huge potential to be employed for the removal of ARVs and NSAIDs from the environment as well as in drug purification or recovery processes.

Funder

National Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3