Double Unloading Gas Control Technology for Fracturing Soft Coal Seams in Overlying Key Strata

Author:

Xie Jun1,Li Feng2,Yan Zhengxu2,Huo Jingjing1

Affiliation:

1. Lu’an Chemical Sijiazhuang Co., Ltd., Jinzhong 045300, China

2. School of Emergency Management and Safety Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China

Abstract

Based on the ‘three highs and one low’ geological conditions of high gas pressure, high gas content, high ground stress, and low permeability in deep coal seams, this study proposes a dual method of hydraulic fracturing of key layers of overlying rock layers combined with pre-extraction of gas via large-diameter caving boreholes. The aim is to unload and dissipate the coal seam by fracturing the overlying key strata, allowing the stress and energy from the excavation working face to be transmitted and transferred to the deep coal seam. Additionally, large-diameter drilling effectively increases the effective drainage radius of the coal seam, resulting in a shorter extraction time. To validate this approach, a fracturing model and a gas extraction model were established for the key layers of the overlying rock layer using the engineering background of the 15,111 excavation working face of a mine in Shanxi. FLAC3D software v.6.0 was utilized to simulate the stress and energy changes of the coal seam before and after fracturing of the key layers, while COMSOL software v.6.0 was used to analyze the gas migration conditions, permeability, and effective drainage radius changes before and after drilling and caving drilling. The findings, combined with the engineering test results, conclude that key strata fracturing combined with large-diameter caving can effectively increase the permeability of coal seams and improve gas extraction. This study serves as a theoretical basis for guiding the design of gas drainage technology under the effects of coal seam pressure relief and permeability enhancement.

Funder

National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

Special Project for Regional Collaborative Innovation of Xinjiang Autonomous Region [Science and technology assistance plan for Xinjiang]

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3