Research on Out-of-Plane Bending Test of PVB Laminated Glass Plate with Different Number of Layers

Author:

Yun Lu1,Li Hui1,Zhang Ning1,Shi Wei23ORCID,Haider Rizwan2ORCID

Affiliation:

1. College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China

2. Deepwater Engineering Research Center, Dalian University of Technology, Dalian 116081, China

3. Ningbo Institute, Dalian University of Technology, Ningbo 315032, China

Abstract

Polyvinyl Butyral (PVB) laminated glass (LG) with varying numbers of layers is extensively utilized in building structures, and its complex mechanical properties, due to the presence of PVB, pose significant challenges. While comprehensive research has been conducted on the bending behavior of two-layer PVB laminated glass, studies focusing on three-layer variants remain limited. This study aims to investigate the bending behavior of three-layer PVB laminated glass under out-of-plane forces and to ascertain the effects of increasing the number of layers. Experimental studies were carried out on one-, two-, and three-layer PVB laminated glass plates subjected to such loads. During the loading process, the out-of-plane displacement and surface strain of the glass plates were monitored and analyzed. From these observations, load-deflection curves were constructed, allowing for the determination of deflection and strain distribution across the planes. The impact of the number of glass layers on stiffness and ultimate load capacity was examined. Additionally, another experiment was conducted to analyze the mechanical properties of the laminated material (PVB). The research results indicate that the tensile strain at the bottom layer of the laminated glass plate reaches its threshold under an out-of-plane load, leading to a brittle fracture in that layer. However, the remaining layers of PVB LG do not fail at this stage, enabling the plate to continue bearing the load. The average ultimate loads for three-layer, two-layer, and one-layer PVB laminated glass are 37.8 kN, 36 kN, and 24.7 kN, respectively, with a ratio of 1:0.95:0.65. The bending stiffness values for these are 2.77 kN/mm, 1.71 kN/mm, and 1.21 kN/mm, respectively, corresponding to a ratio of 1:0.62:0.44. The stiffness shows a nonlinear increase with the layer count, an effect attributed to the PVB’s characteristics according to the analytical findings. The tensile behavior of the laminated materials demonstrates a bilinear characteristic when subjected to strain. The out-of-plane bending tests on glass plates reveal that when the strain rate is low, PVB behaves like a quasi-linear elastic material. Therefore, for design calculations of PVB LG, adopting an elastic modulus of 1.34 MPa for PVB is deemed reasonable. The findings of this study provide insights for research on laminated glass plates, which are instrumental in refining the calculation methods specified in relevant design standards. Concurrently, it offers guidance for selecting the appropriate number of PVB LG layers in engineering applications.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Reference39 articles.

1. Analysis, modelling, and optimization of laminated glasses as plane beam;Ivanov;Int. J. Solids Struct.,2006

2. Stresses in layered glass units and monolithic glass plates;Vallabhan;J. Struct. Eng.,1987

3. Fracture of glass/poly (vinyl_butyral)_laminates. in biaxial flexure;Bennison;Am. Ceram. Soc.,1999

4. Quasi-Static Performance of Interlayer Systems for Laminated Glass;Nawar;J. Mater. Civ. Eng.,2015

5. Edel, M.T. (1997). The Effect of Temperature on the Bending of laminated Glass Beams. [Ph.D. Thesis, Texas A&M University].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3