Nonlinear Regression Approach as a Correction Factor of Measurements of Low-Cost Electrochemical Air Quality Sensors

Author:

Christakis Ioannis1ORCID,Tsakiridis Odysseas1,Sarri Elena1ORCID,Triantis Dimos1ORCID,Stavrakas Ilias1ORCID

Affiliation:

1. Electronic Devices and Materials Laboratory, Department of Electrical and Electronics Engineering, University of West Attica, 250 Thivon Avenue, 122 44 Athens, Greece

Abstract

Air quality directly affects the health of humans. The health implications of poor air quality are recognized by professionals and the public alike and these concerns have driven both the proliferation of formal sensor networks, but also low-cost sensors which can be used in the home. The advancement of technology in recent years has also led to the rapid development of low-cost sensors. Given that citizens are concerned about the air quality of the environment in which they live, they are turning to the supply of low-cost sensors, as they are affordable. The question of the reliability of measurements from low-cost sensors remains an area of research. In this research work, the optimization of ozone (O3) and nitrogen dioxide (NO2) measurements of low-cost electrochemical air quality sensors is investigated by applying nonlinear regression, using a second-order polynomial equation as a correction factor. The proposed correction method is implementable in IoT devices, as it does not require high computational resources. The results show that the measurements are susceptible to correction, with the effect that the corrected values are close to the actual values obtained by the reference instruments of the Department of Environmental Pollution Control Project of Athens (PERPA), a service of the Greek Ministry of the Environment and Energy.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3