Research on Settlement and Section Optimization of Cemented Sand and Gravel (CSG) Dam Based on BP Neural Network

Author:

Wang Shuyan1,Yang Haixia1,Lin Zhanghuan1

Affiliation:

1. College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, China

Abstract

In order to predict the settlement and compressive stress of the cemented sand and gravel (CSG) dam, and optimize its section design, relying on a CSG dam in the design phase, using finite element software ANSYS, the influence of the dam’s own geometric dimensions and the material parameters of the overburden, including upstream and downstream slope coefficients of the first and the second stage of the dam body, the elastic modulus and the Poisson’s ratio of the overburden on the dam’s settlement and compressive stress are studied. An orthogonal experiment with six factors and three levels is conducted for a grey relational analysis of the dam’s maximum settlement and maximum compressive stress separately on these six parameters. Based on the BP neural network, the six selected factors are used as input layers for the neural network prediction model, and the maximum settlement and compressive stress of the dam are taken as the result to be output. The mapping relationship between the geometric dimensions of the dam body and the maximum settlement and the maximum compressive stress in the trained prediction model is combined with the global optimization tool Pattern Search in the MATLAB toolbox to optimize the section design of the dam. The results reveal that the six selected factors have a high correlation degree with the dam’s maximum settlement and maximum compressive stress. In dimension parameters, the downstream slope coefficient of the second stage of the dam has the greatest impact on the maximum settlement, with a grey correlation degree of 0.7367, and the upstream slope coefficient of the second stage of the dam has the greatest impact on the maximum compressive stress, with a grey correlation degree of 0.7012. The influence of the elastic modulus of the overburden on the maximum settlement and maximum compressive stress of the dam body is greater than its Poisson’s ratio. The BP neural network is applicable for predicting the dam’s settlement based on geometric dimension parameters of the dam and material parameters of the surrounding environment, with R2 reaching 0.9996 and RMSE only 0.0109 cm. Based on the optimization method combined with BP neural network, the material consumption is saved by 11.83%, the maximum settlement is reduced by 2.6%, the maximum compressive stress is reduced by 37.35%, and the optimization time is shortened by 40.92%, compared to the traditional method. The findings have certain reference value for site selection, dimension design, overburden treatment, and design optimization of CSG dams.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference37 articles.

1. Review on Mechanical Properties, Durability and Dam Type of CSG Material;Sun;Yellow River,2016

2. Adaptability Analysis of Subgrade Condition of Cement Sand Gravel Dam Based on the Mechanical Properties;Wang;Water Conserv. Sci. Technol.,2018

3. Kim, S., Choi, W., Kim, Y., Shin, J., and Kim, B. (2023). Investigation of Compressive Strength Characteristics of Hardfill Material and Seismic Stability of Hardfill Dams. Appl. Sci., 13.

4. Jia, J., Ding, L., Wu, Y., Zhao, C., and Zhao, L. (2023). Research and Application of Key Technologies for the Construction of Cemented Material Dam with Soft Rock. Appl. Sci., 13.

5. Jia, J., and Ji, J. Research on the anti-skid stability of the surface layer of Shoukoubao cementitious granular material dam. Proceedings of the 2014 Academic Annual Conference of the China Dams Association.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3