Affiliation:
1. Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
Abstract
The wavefront reconstruction is a crucial step in determining the performance of wavefront detection instruments. The wavefront reconstruction algorithm is primarily evaluated in three dimensions: accuracy, speed, and noise immunity. In this paper, we propose a hybrid zonal reconstruction algorithm that introduces slope and curvature information in the diagonal, anti-diagonal, horizontal, and vertical directions by dividing the neighbor sampling points into subregions in groups of four. By canceling the same parameters in integration equations, an algorithm using multi-directional slope–curvature information is achieved with only two sets of integration equations in each subregion, reducing the processing time. Simulation experiments show that the relative root-mean-square reconstruction error of this algorithm is improved by about 4 orders of magnitude compared with existing algorithms that use multi-directional slope information or slope–curvature information alone. Compared with the hybrid multi-directional slope–curvature algorithm, the proposed algorithm can reduce computation time by about 50% as well as provide better noise immunity and reconstruction accuracy. Finally, the validity of the proposed algorithm is verified by the null test experiment.
Funder
National Natural Science Foundation of China
National Science and Technology Major Project
Major Scientific Instrument Development Project of National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献