Fast and Highly Accurate Zonal Wavefront Reconstruction from Multi-Directional Slope and Curvature Information Using Subregion Cancelation

Author:

Liu Shuhao1ORCID,Zhong Hui1,Li Yanqiu1,Liu Ke1ORCID

Affiliation:

1. Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China

Abstract

The wavefront reconstruction is a crucial step in determining the performance of wavefront detection instruments. The wavefront reconstruction algorithm is primarily evaluated in three dimensions: accuracy, speed, and noise immunity. In this paper, we propose a hybrid zonal reconstruction algorithm that introduces slope and curvature information in the diagonal, anti-diagonal, horizontal, and vertical directions by dividing the neighbor sampling points into subregions in groups of four. By canceling the same parameters in integration equations, an algorithm using multi-directional slope–curvature information is achieved with only two sets of integration equations in each subregion, reducing the processing time. Simulation experiments show that the relative root-mean-square reconstruction error of this algorithm is improved by about 4 orders of magnitude compared with existing algorithms that use multi-directional slope information or slope–curvature information alone. Compared with the hybrid multi-directional slope–curvature algorithm, the proposed algorithm can reduce computation time by about 50% as well as provide better noise immunity and reconstruction accuracy. Finally, the validity of the proposed algorithm is verified by the null test experiment.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Major Scientific Instrument Development Project of National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3