Use of Selected Plant Extracts in Controlling and Neutralizing Toxins and Sporozoites Associated with Necrotic Enteritis and Coccidiosis

Author:

Khan Md Maruf12,Lillehoj Hyun S.3ORCID,Lee Youngsub3,Adetunji Adedeji O.14ORCID,Omaliko Paul C.1,Kang Hye Won5,Fasina Yewande O.1ORCID

Affiliation:

1. Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA

2. Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI 02903, USA

3. Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA

4. Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA

5. Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA

Abstract

Due to increasing concerns about the contamination of animal food products with antibiotic-resistant bacteria and their byproducts, phytogenic feed additives in animal diets have been explored as antibiotic alternatives. In this study, we investigated the effect of ginger root extract (GRE), green tea extract (GTEC caffeinated and GTED decaffeinated), and onion peel combined (OPEC) on the activity of C. perfringens toxin genes and Eimeria tenella sporozoites. To this end, two Clostridium perfringens strains, CP19 and CP240 (Rollins Diagnostic Lab, Raleigh, NC, USA), were cultured (three replicates per treatment) as follows: without additives (Control), with Bacitracin Methylene Disalicylate (BMD), with GRE, with GTEC, with GTED, and, finally, with OPEC for 0, 2, 4, 6, 8, and 24 h. RNA was extracted to determine the expression of tpeL, alpha toxin (α-toxin), and NetB and we measured the protein concentration of NetB-positive C. perfringens toxin. Also, we evaluated the cytotoxic effect of green tea and ginger extracts on E. tenella sporozoites. Results show that phytogenic extracts, GRE, GTEC, and GTED, significantly reduced (p < 0.05) the level of expression of α-toxin gene compared to control; however, BMD treatment showed much less effect. Furthermore, NetB and tpeL encoding gene expression was significantly (p < 0.05) reduced by GRE and GTED, as well as BMD treatment, compared to the control. In contrast, GTEC treatment did not change the expression levels of these genes and was similar to control. With the CP240 strain, all the selected phytogenic extracts significantly reduced (p < 0.05) the expression of selected genes, except for OPEC, which was similar to control. GRE, GTEC, and GTED all reduced the viability of concentration of E. tenella sporozoites. Overall, our data show that these selected phytogenic extracts reduced the level of expression of toxin encoding genes associated with necrotic enteritis and decreased the viability of sporozoites which cause coccidiosis in broiler chicken.

Funder

the USDA/NIFA SAS

National Institute for Food and Agriculture of the United States Department of Agriculture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3