RumorLLM: A Rumor Large Language Model-Based Fake-News-Detection Data-Augmentation Approach

Author:

Lai Jianqiao1,Yang Xinran1,Luo Wenyue1,Zhou Linjiang1ORCID,Li Langchen1,Wang Yongqi1,Shi Xiaochuan1ORCID

Affiliation:

1. School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

Abstract

With the rapid development of the Internet and social media, false information, rumors, and misleading content have become pervasive, posing significant threats to public opinion and social stability, and even causing serious societal harm. This paper introduces a novel solution to address the challenges of fake news detection, presenting the “Rumor Large Language Models” (RumorLLM), a large language model finetuned with rumor writing styles and content. The key contributions include the development of RumorLLM and a data-augmentation method for small categories, effectively mitigating the issue of category imbalance in real-world fake-news datasets. Experimental results on the BuzzFeed and PolitiFact datasets demonstrate the superiority of the proposed model over baseline methods, particularly in F1 score and AUC-ROC. The model’s robust performance highlights its effectiveness in handling imbalanced datasets and provides a promising solution to the pressing issue of false-information proliferation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Humanities and Social Sciences of Ministry of Education Planning Fund

Publisher

MDPI AG

Reference45 articles.

1. Content-Based Fake News Detection with Machine and Deep Learning: A Systematic Review;Capuano;Neurocomputing,2023

2. Burstein, J., Doran, C., and Solorio, T. (2019, January 2–7). Early rumour detection. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota. Available online: https://aclanthology.org/N19-1163.

3. Detecting rumors through modeling information propagation networks in a social media environment;Liu;IEEE Trans. Comput. Soc. Syst.,2016

4. Sampson, J., Morstatter, F., Wu, L., and Liu, H. (2016, January 24–28). Leveraging the implicit structure within social media for emergent rumor detection. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, ser. CIKM ’16, Indianapolis, IN, USA.

5. Fake news detection based on news content and social contexts: A transformer-based approach;Raza;Int. J. Data Sci. Anal.,2022

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3