A New Shear Strength Model with Structural Damage for Red Clay in the Qinghai-Tibetan Plateau

Author:

Yu Yanhai1,Zhang Zhihong1,Dai Fuchu1,Bai Shunguo2

Affiliation:

1. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

2. Urban Construction College, Hebei Agricultural University, Baoding 071001, China

Abstract

Under the background of climate warming in the Qinghai-Tibetan Plateau (QTP), frequent freeze–thaw cycling (FTC) brings about great geological disasters such as subgrade failure, landslides, and mudslides, which is closely related to the strength reduction caused by the structural damage of soils. In this study, to explore the association between macro shear strength and microstructure evolution of soils subjected to FTC, the red clay distributed widely in the QTP was chosen and used to conduct a series of triaxial shear and nuclear magnetic resonance (NMR) tests in the range of 1 to 7 FTCs. Triaxial shear test results reveal that the shear strength reduction of specimens mainly occurs within five FTCs, and the trend of peak deviator stress with increasing FTCs can be described in three stages: rapid descent (FTCs less than three), slow descent (FTCs between three and five), and stabilization (FTCs greater than five). NMR tests show that the T2 spectrum curves exhibit a distinct bimodal distribution characteristic, corresponding to macropores and micropores. Part of the micropores gradually develop into macropores with increasing FTCs, especially within five FTCs. The increase in macropores proportion leads to a loose soil structure, which is consistent with the deterioration of the shear strength of specimens. Finally, based on the experimental results and classical Mohr–Coulomb theory, a new shear strength model with structural damage for red clay has been proposed by introducing a damage factor expressed by T2 spectral area.

Funder

Second Tibetan Plateau Scientific Expedition and Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3