Two-Dimensional Ultra Light-Weight Infant Pose Estimation with Single Branch Network

Author:

Nguyen Viet Dung1ORCID,Nguyen-Quang Thinh1ORCID,Nguyen Minh Duc1234ORCID,Phan Dang Hung5ORCID,Bui Ngoc Dung6ORCID

Affiliation:

1. Biomedical Engineering Group, School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam

2. Westmead Applied Research Centre, The University of Sydney, Sydney 2145, Australia

3. School of Biomedical Engineering, The University of Sydney, Sydney 2006, Australia

4. Cardiology Department, Westmead Hospital, Westmead 2145, Australia

5. Center for Information Technology, Hanoi University of Industry, Hanoi 100000, Vietnam

6. Faculty of Information Technology, University of Transport and Communications, Hanoi 100000, Vietnam

Abstract

Motivated by the increasing interest in clinical studies focused on infant movements and poses, this research addresses the limited emphasis on speed and efficiency in existing 2D and 3D pose estimation methods, particularly concerning infant datasets. The scarcity of publicly available infant data poses a significant challenge. In response, we aim to develop a lightweight pose estimation model tailored for edge devices and CPUs. Drawing inspiration from the OpenPose-2016 approach, we refine the algorithm’s architecture, focusing on 2D image training. The resulting model, with 4.09 million parameters, features a single-branch structure. During execution, it achieves an algorithmic complexity of 8.97 giga floating-point operations per second (GFLOPS), enabling operation at approximately 23 frames per second on a Core i5-10400f processor.Notably, this approach balances compact dimensions with superior performance on our self-collected infant dataset. We anticipate that this pragmatic methodology establishes a robust foundation, addressing the need for speed and efficiency in infant pose estimation and providing favorable conditions for future research in this application.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3