Electrochemical Deposition of Bismuth on Graphite Felt Electrodes: Influence on Negative Half-Cell Reactions in Vanadium Redox Flow Batteries

Author:

Chen Shengbin1,Sun Chuanyu2ORCID,Zhang Huan1,Yu Hao1,Wang Wentong1

Affiliation:

1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China

2. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150006, China

Abstract

In this paper, bismuth (Bi) was successfully deposited on graphite felts to improve the electrochemical performances of vanadium redox flow batteries. Modified graphite felts with different Bi particle loadings were obtained through electrochemical deposition at voltages of 0.8 V, 1.2 V and 1.6 V in 0.1 M BiCl3 solution for 10 min. The optimal Bi particle loading was confirmed by scanning electron microscopy (SEM), single cells and electrochemical tests. The SEM images revealed the deposition of granular Bi particles on the fiber surface. The Bi-modified felts which were electro-chemically deposited at 1.2 V (Bi/TGF-1.2V) showed excellent electrochemical performances in cyclic voltammetry curves and impedance spectroscopy. Meanwhile, the single cells assembled with Bi/TGF-1.2V as negative electrodes exhibited higher voltage efficiencies than the others. The optimized Bi particle loading induced better catalysis of the V3+/V2+ reaction and hence significantly improved the cell performances. In addition, the prepared Bi-modified felts showed stable cell performances and slower charge–discharge capacity declines than the other electrodes at current densities between 20 mA/cm2 and 80 mA/cm2. Compared with the pristine felt, the voltage efficiency of the vanadium redox flow battery assembled with Bi/TGF-1.2V graphite felt was 9.47% higher at the current density of 80 mA/cm2. The proposed method has considerable potential and guiding significance for the future modification of graphite felt for redox flow batteries.

Funder

Dalian Polytechnic University

2023 Youth Talent Introduction Scientific Research Startup Fee

Harbin Institute of Technology

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3