Surface Structuring of the CP Titanium by Ultrafast Laser Pulses

Author:

Ronoh Kipkurui123ORCID,Novotný Jan4,Mrňa Libor4,Knápek Alexandr4ORCID,Sobola Dinara125ORCID

Affiliation:

1. Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic

2. Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic

3. Department of Mechanical Engineering, Dedan Kimathi University of Technology, Private Bag, Dedan Kimathi, Nyeri 10143, Kenya

4. Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic

5. Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 616 62 Brno, Czech Republic

Abstract

Surface structuring by ultrafast lasers is a promising technique to modify surface-related properties of materials to tailor them for specific applications. In the present study, we experimentally investigated the laser structuring of commercially pure titanium (CP Ti) using ultrafast pulses to understand the role of the laser input parameters on the development of surface morphology, optical properties, surface chemistry, and wettability behaviour. The processed surfaces were characterized by a scanning electron microscope, energy-dispersive X-ray spectroscopy (EDX), Raman microscope, optical microscope, and sessile drop method. Laser-induced periodic surface structures decorated with nanodroplets were noted to be formed on the surface of the laser-structured CP Ti. The surface roughness measurements showed that the laser-structured surfaces had nanoscale roughness values. The EDX and the Raman analyses show that laser-structured surfaces of CP Ti have a thin oxide film. Different colours on different surfaces processed by different laser parameters were observed. The wettability assessment shows that CP Ti can transition from hydrophilic–hydrophobic and vice versa depending on the environmental conditions. This study shows that laser structuring can be utilized to modify CP Ti surfaces to obtain desirable surface properties that can find potential applications in different fields.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3