The Impact of GCP Chip Distribution on Kompsat-3A RPC Bias Compensation

Author:

Jo Hyeonjeong1,Lee Changno2,Oh Jaehong3ORCID

Affiliation:

1. Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

2. Department of Civil Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

3. Department of Civil Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

Abstract

The vast potential of high-resolution satellite images, including Kompsat-3A, has been demonstrated across diverse applications, such as mapping and disaster monitoring. However, these images can only be utilized as reliable GIS (geographic information system) data when they possess precise geographical information. To achieve this, sensor model information, represented by RPCs (rational polynomial coefficients), requires bias compensation through GCPs (ground control points). Though having a substantial number of well-distributed GCPs across satellite images is ideal, the acquisition process is often restricted due to cost and inaccessibility. The uniform distribution of GCP chips is not guaranteed, necessitating an investigation into the impact of GCP distribution on the bias compensation process, which is the focus of this study. Experiments were meticulously conducted using Kompsat-3A data using dense GCP information. The dense GCP information was automatically generated from aerial orthoimages through a three-step process. Firstly, the GCP chips were extracted from the aerial images, focusing on feature points. Secondly, these chips were projected onto the target Kompsat-3A data to align them accurately. Lastly, precise satellite image coordinates of the chips were obtained through image matching between the chips and the target Kompsat-3A image. The dense GCPs enabled detailed bias analysis that exhibited skewness in most Kompsat-3A data. This necessitates the implementation of an affine model for proper bias compensation over the entire image space. Next, the study delved into the influence of GCP distribution on RPC bias compensation. To this end, each target satellite image space was divided into nine zones, with the dense GCPs assigned accordingly. The accuracy of bias compensation was analyzed across nine experimental cases, ranging from GCPs occupying only one zone to GCPs covering all nine zones. It was observed that GCPs covering at least four or five zones should be utilized for reliable RPC bias compensation of Kompsat-3A, especially when aiming for a high level of accuracy with an RMSE of one pixel. Finally, it was concluded that GCPs covering three zones yielded satisfactory results as a minimum GCP requirement, but this was contingent upon their distribution not following a straight zone pattern.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3