Comparative Analysis of the Stability of Overlying Rock Mass for Two Types of Lined Rock Caverns Based on Rock Mass Classification

Author:

Yi Qi12ORCID,Shen Zhen34,Sun Guanhua12,Lin Shan5,Luo Hongming12ORCID

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

4. China Dating Corporation Ltd. Ningxia Branch, Yinchuan 750002, China

5. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

Abstract

Lined rock caverns (LRCs) are becoming the preferred option for air storage at sites where there are no natural cavities, such as salt caverns, and this storage technology is being developed and utilized in markets around the world. The stability of the overlying rock mass is one of the key factors to ensure the successful operation of LRCs. In this paper, a stability assessment method is presented that first calculates the potential fracture surfaces of the surrounding rock based on the limiting stress field and the Mohr–Coulomb damage criterion, and then, based on these fracture surfaces, solves for the factor of safety defined on the basis of the concept of strength reserve. Using this method, this study evaluates the stability of two types of LRCs, tunnel- and silo-type, under three different geological conditions. The results of the analysis show that the silo-type LRCs are more economical for engineering purposes. Also, this paper provides some guidance for engineers in site selection and preliminary design.

Funder

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3