Studying the Role of Visuospatial Attention in the Multi-Attribute Task Battery II

Author:

Gugerell Daniel1ORCID,Gollan Benedikt2,Stolte Moritz1ORCID,Ansorge Ulrich134

Affiliation:

1. Faculty of Psychology, University of Vienna, 1010 Vienna, Austria

2. Research Studios Austria, 1090 Vienna, Austria

3. Vienna Cognitive Science Hub, University of Vienna, 1010 Vienna, Austria

4. Research Platform Mediatised Lifeworlds, University of Vienna, 1010 Vienna, Austria

Abstract

Task batteries mimicking user tasks are of high heuristic value. Supposedly, they measure individual human aptitude regarding the task in question. However, less is often known about the underlying mechanisms or functions that account for task performance in such complex batteries. This is also true of the Multi-Attribute Task Battery (MATB-II). The MATB-II is a computer display task. It aims to measure human control operations on a flight console. Using the MATB-II and a visual-search task measure of spatial attention, we tested if capture of spatial attention in a bottom-up or top-down way predicted performance in the MATB-II. This is important to understand for questions such as how to implement warning signals on visual displays in human–computer interaction and for what to practice during training of operating with such displays. To measure visuospatial attention, we used both classical task-performance measures (i.e., reaction times and accuracy) as well as novel unobtrusive real-time pupillometry. The latter was done as pupil size covaries with task demands. A large number of analyses showed that: (1) Top-down attention measured before and after the MATB-II was positively correlated. (2) Test-retest reliability was also given for bottom-up attention, but to a smaller degree. As expected, the two spatial attention measures were also negatively correlated with one another. However, (3) neither of the visuospatial attention measures was significantly correlated with overall MATB-II performance, nor with (4) any of the MATB-II subtask performance measures. The latter was true even if the subtask required visuospatial attention (as in the system monitoring task of the MATB-II). (5) Neither did pupillometry predict MATB-II performance, nor performance in any of the MATB-II’s subtasks. Yet, (6) pupil size discriminated between different stages of subtask performance in system monitoring. This finding indicated that temporal segregation of pupil size measures is necessary for their correct interpretation, and that caution is advised regarding average pupil-size measures of task demands across tasks and time points within tasks. Finally, we observed surprising effects of workload (or cognitive load) manipulation on MATB-II performance itself, namely, better performance under high- rather than low-workload conditions. The latter findings imply that the MATB-II itself poses a number of questions about its underlying rationale, besides allowing occasional usage in more applied research.

Funder

Austrian Research Promotion Agency

University of Vienna

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3